

If
$$f(x) = 2^{-x} + x - 4$$
, find $f(-1)$

A.
$$-1(2^{-x} + x - 4)$$
 B. -3 C. $2^{-x} - x + 4$ D. $-\frac{9}{2}$ E. -1

B.
$$-3$$

C.
$$2^{-x} - x + 4$$

D.
$$-\frac{9}{2}$$

Last Week's Answer

Find an equivalent form of $\frac{2}{x+3} + \frac{1}{x-3}$

A.
$$\frac{3x-1}{x^2-3}$$
 B. $\frac{3}{2x}$ C. $\frac{3}{x^2-9}$ D. $\frac{3x-3}{x^2-9}$ E. $\frac{x-1}{x^2-1}$

B.
$$\frac{3}{2x}$$

C.
$$\frac{3}{x^2-9}$$

D.
$$\frac{3x-3}{x^2-9}$$

E.
$$\frac{x-1}{x^2-1}$$

Solution:

$$\frac{2}{x+3} + \frac{1}{x-3} = \frac{2}{x+3} \cdot \frac{x-3}{x-3} + \frac{1}{x-3} \cdot \frac{x-3}{x-3} = \frac{2x-6}{(x+3)(x-3)} + \frac{x+3}{(x+3)(x-3)} = \frac{3x-3}{(x+3)(x-3)} = \frac{3x-3}{x^2-9}$$

Each week, we'll reveal the answer to the previous week's question!

Visit us at WWW.NCEMPT.ORG

for additional resources or to register to test for FREE!